

The Linatron®-Mi™ is a modular high-energy X-ray source with pulse to pulse energy switching capability, especially designed for cargo screening and security applications. By rapidly alternating between two distinct energy levels, systems incorporating the Mi X-ray source can be designed to discriminate between materials based on their density characteristics. Figure 1 illustrates the automated switching between two energy levels.

Specifications

1.0 Standard Equipment and Services

1.1 Control Console

The standard control console is a touch screen display system. An optional desktop PC control console is available (see section 4.6).

Touchscreen Control Console

1.2 X-ray Head/RF Unit
The Mi X-ray head includes the RF unit which work together to generate X-rays.

2.0 Performance

X-ray Head and RF Unit

- 1.3 Modulator/Power Distribution Cabinet External signal interface.
- 1.4 Temperature Control Unit (TCU)
 The TCU is used to keep the system components at a nominal 30°C. The TCU is connected to a separate 13-kVA power source and can operate on line voltages from 220 VAC and 400 VAC, 50Hz, or 220 VAC and 460 VAC, 60Hz. A cold temperature rapid startup options is available. This increases the TCU power requirement to a peak of approximately 20 kVA during the warm up period.
- 1.5 Standard Spare Parts Kit The standard spare parts kit includes over 40 items such as PC board and individual components.
- 1.6 Interconnecting Cables and Hoses (X-ray Head to Modulator. Modulator to Console) and Hoses (TCU to X-ray Head) Included. Lengths up to 100 meters.
- 1.7 Manuals and Data Books
 Two sets of operator and maintenance manuals and data books.
- 1.8 Installation Supervision and Start-up Assistance
- 1.9 Varex's Standard Warranty

2.0 Performance

2.1 X-ray Beam Quality 10 x 10 cm Field
The X-ray beam quality is specified using Half Value
Layer (HVL) in steel. This corresponds to the nominal
X-ray energy shown in Table 1. The HVL numbers in
Table 1 are derived from a compilation of broad beam
data.

Table 1								
Model	Nominal	HVL	Flatness	Max. Dose Rate				
	Energy (MeV)	(in)	(% @ 7.5°)	(Gy/min)				
Mi-6	4.0	1.00	>69.0	2.5				
	6.0	1.10	>62.0	8.0				
Mi-9	6.0	1.10	>62.0	10.0				
	9.0	1.18	>55.0	30.0				
Note:	Dose output o	curs (during each p	ulse as shown on				

Note: Dose output occurs during each pulse as shown on the waveform representation in Figure 1.

2.2 X-ray Field Size

A 30° cone or 22.5° square defines the field. Also see section 4.1.

- 2.3 X-ray Beam Focal Spot Size
 The focal spot size does not exceed 2.0 mm in diameter. Also see section 4.4.
- 2.4 X-ray Beam Symmetry
 The beam asymmetry does not exceed 5% at +/- 7.5°
 off the central axis for all energies.
- 2.5 Energy Switching Rate

Energy is switched pulse to pulse when controlled through the control console. Pulse sequencing can be defined for different combinations through customer interface (see Table 2).

Table 2					
Mode	Pulse Range (pps)				
Low	50-400				
High	50-350				
Interlaced	50-400				

2.6 Standard Leakage Radiation

The leakage radiation is measured along the horizontal axis at 1 meter from the beam centerline at angles 60° and greater, outside the primary beam. The values in Table 3 are a fraction of the primary beam central axis dose rate measured with a $10 \text{ cm} \times 10 \text{ cm}$ collimator. See section 4.1 for lower leakage radiation options. Neutron shielding must be provided by the user when a Linatron is operating at $\geq 6.1 \text{ MeV}$ energy. A 6.1 MeV beam may produce up to 1.0×10^{-5} rem of neutrons per X-ray rad in the primary beam. A 9.0 MeV beam may produce a worse case 1.0×10^{-4} rem of neutrons per X-ray rad in the primary beam. Refer to NCRP 144 and NCRP 79 handbooks for shielding guidance.

Table 3						
Operating Energy 6 MeV, 9 MeV	Leakage (fraction) 1×10 ⁻³					

3.0 Customer Facility Requirements

3.1 Electrical Requirements

The Linatron-Mi operates from a single 15-kVA 50/60 Hz power source. Two voltage ranges are available.

- 3.1.1 Low Voltage Option220 VAC, 3 phase, 3 or 4 wire plus ground,60 Amp minimum surge per leg. +/- 5%voltage regulation is required.
- 3.1.2 High Voltage Option
 400 VAC, 3 phase, 4 wire plus ground, 40
 Amp minimum surge per leg. +/-5% voltage regulation is required.

3.2 Operating Environment

3.2.1 Indoor Service

The operating environment for control console and modulator must be between 4°C (39°F) and 35°C (95°F), with 90% maximum relative humidity (noncondensing).

3.2.2 Outdoor Service Consult factory about outdoor use of the Linatron system.

3.2.3 Ventilation

The approximate heat given to room air from each component with system operating at full power is given below:

X-ray Head: 1.0 kW Modulator Cabinet: 2.0 kW RF Unit: 1.0kW Temperature Control Unit: 6.0-12.0kW Touchscreen Control Console: Negligible

Modulator

4.0 Optional Equipment

4.1 Lower Leakage Options are listed in Table 4.

Table 4								
Model	Leakage (fraction)		RF Unit/Head Wt.					
			(lbs) - Low profile leakage					
	Super Low	Ultra Low	Super Low	Ultra Low				
Mi-6	2×10^{-5}	2.5 x 10 ⁻⁶	2,300	5,100				
Mi-9	2×10^{-5}	N/A	2,300	N/A				

4.2 Voltage Regulator

Recommended for installations where line power fluctuations are greater than +/-5%. The regulator is CE and UL approved.

4.3 Small Focal Spot

1.0 to 1.5 mm available for the Mi-9 only. Consult factory for output dose rates for smaller spot size options.

Energy Switching Rate

Energy switching is provided under software control and can be set from minimum of 0 to a maximum of 300 energy changes per second. The system is limited

CE Marking

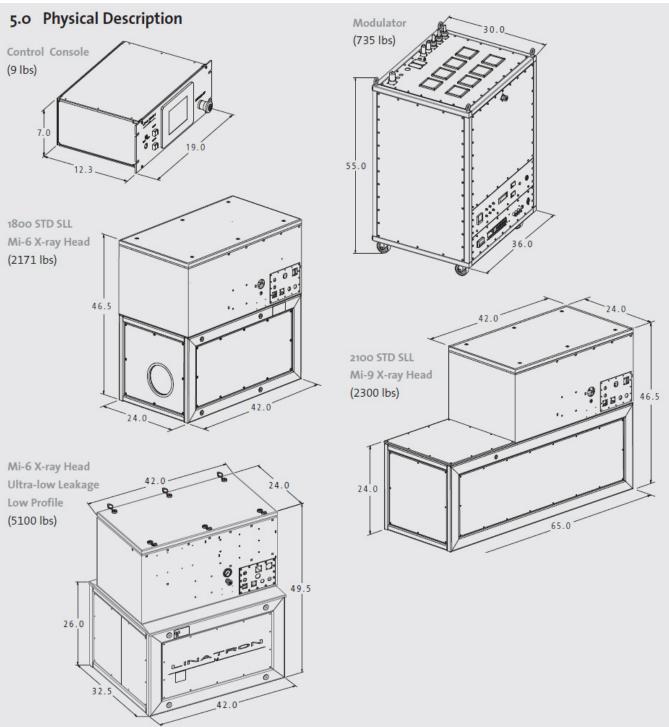
All Linatron-Mi models are designed and manufactured in accordance with the Electromagnetic Compatibility Directive 89/336/EEC and Low Voltage Directive 73/23/EEC.

ETL Marking

All Linatron-Mi models conform to UL STD 61010A-1 and are certified to CSA 1010.1.

CSA certification is pending for the Mi-6 and Mi-9 products.

Quality Standard


Varex Imaging Corporation, Las Vegas Facility, Quality Management Systems is registered to ISO 9001:2008.

ISO 9001:2000 FM 80701

Varex Imaging and Linatron are registered trademarks, and Linatron-Mi is a trademark of Varex Imaging Corporation. All other trademarks are the property of their respective owners.

Salt Lake City, UT Tel: 801-972-5000 Fax: 801-973-5050

Las Vegas, NV

Las Vegas, NV Tel: 702-938-4859 Fax: 702-938-4833

Lincolnshire, IL

Tel: 847-279-5100 Fax: 847-279-4900